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The Operator Compact Implicit Method for Parabolic Equations

The results presented in this report were obtained as part of a concerted
effort to develop reliable and efficient numerical techniques for solving
major fluid dynamics problems. Here the methods are designed to form the
basis for a practicable computer code to solve viscous fluid flow problems.
Efficient fourth order finite difference approximations are developed. Their
associated stability and accuracy characteristics are analyzed and studied.

These techniques presently form the basis for a three-dimensional boundary
layer computer code being developed at NSWC/WOL.

This study has been supported jointly by the Naval Surface Weapons Center
Independent Research Fund, NAVAIR and NAVSEA.
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I. INTRODUCTION

The current engineering requirements for providing computational fluid
dynamics codes for realistic viscous flow problems have provided the impetus
tor the development and implementation of higher order finite difference
techniques [ 6], [ 1], [22]. 1t has been repeatedly demonstrated on model
problems, that even the simplest types of higher order methods should provide
tremendous practical advantages in terms of diminishing the required number of
points (storage) and also the overall computing time for a desired resolution.

The present effort was undertaken to confront the full range of associated
computational problems that would be involved in practical viscous flow field
calculations. Our goal was to trv to develop a cohesive set of higher order
approximation tools which would help to indicate what methods ultimately might
be best emploved to form the basis of a major new code.

It appeared to several people almost simultaneously (sparked by a suggestion
of H. O. Kreiss [14]) that from among the various techniques available a fruitful
class of methods might emerge from the so-called compact implicit techniques
[ 3], [ 61. Although there appear to be a variety of forms and implementations
the approaches do share some broad characteristics. The higher order is usually
sought for the spatial part of the differential operator. The method developed
is generally required to;

1. reduce to tridiagonal form for fourth order accuracy

2. allow for nonuniform spatial grids (usually at the expense of one
order of accuracy)

3. allow for flexibility in choosing the time step.

In the various methods developed so far all these conditions have been met for
simple model problems. However, further important concerns still remain.

As pointed out by [ 3], [4] and [ 2] the usual compact implicit techniques,
because of their implicit complexity, are not generally applicable in a direct
manner to problems with varying order derivative terms unless a vector unknown
of the derivative values is considered. Indeed, adopting the factorization
technique suggested in [ 3] for a wave equation problem to a model parabolic
problem resulted in numerical instabilities (see Section III.3 below). To
circumvent such problems, we advocate the use of a more general spatial approxi-
mation method, an operator compact implicit method suggested by B. Swartz [24].
Essentially, the same basic ideas are involved and instead of setting up
spatial approximations for individual derivative terms one now poses the
difference approximation in terms of the spatial operator. This spatial approxima-
tion has been previously derived by [17]; however, the basic derivation and
implementation there proceeds along lines different from those taken here.

Another serious concern that one has relates to the stability character-
istics of the overall method. If the spatial operator is associated with
implicit temporal schemes, as it might be expected, a variety of unconditionally
stable schemes result for the linear model. However, the cell Reynolds number
stability characteristics are now somewhat more difficult to elucidate
Although our analysis in section V is incomplete, all experiments to date
indicate that for the operator compact implicit (OCI) approximation, there is a
wider range of admissible cell Reynolds number than for the usual compact implicit
methods.
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In our numerical studies of nonlinear models we have chosen to use two
different approaches. As a benchmark, we have taken the basic Crank-Nicolson
routine solved by simple successive approximations. Our second approach adapts
a Lees type method [12] which does not require temporal iterations for a non-
linear problem. This latter simple scheme has proven to be very effective in
numerical experiments.

What emerges from our investigation is that a promising class of methods
can be developed around the operator compact implicit method. On the basis of
our experiments an OCI-Lees tvpe scheme appears to be very efficient and
reliable. Tn the future we hope to resolve questions concerning the treatment
of mixed spatial derivative terms and to more fully resolve the limitations
associated with cell Reynolds number effects.

IT1. BASIC DIFFERENCE EQUATIONS

The classical finite difference approach for solving two-point boundary
value problems of the form

(Z-1) L(u) = a(x) u + b(x) u = f, xe[0,1]
XX X

with u(0), u(l) given is to separately substitute standard approximations for the
first and second derivatives in (2.1) and then solve the resulting system of
equations. Accordingly, the centered second order approximation for these terms

is
§ U U - U,
+ =1
(2.2) e T (uy + 0(h2)
*in Uj+1 - 2Uj + Uj_1 )
£2.3) oh = é = (uxx)j + 0(h")

h

where x1 = jh, j=0,1,+--,J and Uj v u(xj) and h = 1/J is the mesh size.

The resulting system of equations that is derived upon substitution of
(2.2), (2.3) into (2.1) is tridiagonal, and hence easily solved. For the case
of Dirichlet data, there is no need to create fictitious points (i.e. to
extrapolate information) in order to implement the scheme. However, if higher
order accuracy is desired, the classical approach is to enlarge the basic mesh
star, i.e. use more points in the discretization. Again, for the centered type
of approximation fourth order accuracy is achieved by the following

r §. U U - 8U + 8U - U
1,28 x4 " f-2 i~1 41 442 4
{24 [ =% 6le 7h 12h (u )y + 0k
2
. - 3= 52 ilgl p - 91:2 + 16UJ:1 - 30Uj + 16Ul+1 - Uiiﬁ,, by o(ha)
12 "x h2 12h2 xx’j
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By substituting (2.4), (2.5) into (2.1) a pentadiagonal system of linear
equations is obtained, and it is necessary to use fictitious points near both
boundaries.

A different fourth order approximation can be obtained by following a
suggestion of Kreiss [14]. The resulting representation is of an implicit
nature in that there are relationships among the function and its derivative at
each of three adjacent mesh points. Because the method achieves the highest
order accuracy possible on the smallest star it has been called the compact
implicit method. For the derivatives considered above, following our notation,
one obtains

21
ax Ex 4
(2.6a) [r + T] 51 Uj = (ux)j + 0(h’)
or
2
8 R e = s
3 ie ATORBNIEY - . WG 1 R R 4
(2.6b) h 11. 5 it 6 (Ux)j + 0(h )
Gu ), + 4(u ). + (u
X)J+1 2)3 x)jjl P O(hé)
and
; -1 , 2 )
(2.7a) T el —E-9 & o Y, +06E)
12 h il xx ]
or
2 2
8 Dot v DU T s
2 - R ) M. SRl - S X + o(n®
(2.7b) h2 Lj hz I+ 12 (uxx)j o(h’)
+ +
(uxx)j+1 10(uxx)j (uxx)ijl + O(ha)

12

Equations (2.6) and (2.7) are derivable by either a Taylor series analysis,
Hermite polynomial interpolation or by thinking of (2.4) and (2.5) as Neumann
series representations (up to fourth order) of (2.6) and (2.7), respectively.

As a reference for these formulas in the case of an uneven grid, see [1].

By substituting (2.6) and (2.7) into (2.1) it becomes apparent that in
general it is not possible to directly obtain a tractable system of equations in
terms of ”i alone. Indeed, to solve the resulting system one can define new

o ("xx)j
diagonal system of equations approximating (2.1):

variables Fj v (ux) and S and develop the following 3x3 block tri-
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gy Fo 4+ 4F +F
(a) _Jilaﬁ,_lfl,_ i . SN, S L 0
Uyq - 2U, + U, S,,q + 10S, + S, _
(2.8) ) —L= Sl Sl

h

b.F, + a,S, = f,
(e) i e s j

where bi = b(xi) and aj = a(xi) and the above equations hold for j=1,2---,J-1.
Alternatively.'omittinﬁ Fi ana using only U Fj a 2x2 block tridiagonal system

j)

results from using (2.8)(5) with

V... = 20 4, b, 10b b,
(290 A4 BRI R B o, dp g
12 aj+1 Afeit aj il aj_1 i-1
R L e
32 A R e
i e

quations (2.8) and (2.9) require more work to solve them than the second
order method, but generally the higher order accuracy permits one to solve with
considerably fewer points to achieve a comparable accuracy. Moreover, for
Dirichlet data, no fictitious points are needed. Boundary values (j=0,J) are
required for F; in (2.9) and for Fi and Sj in (2.8). How these values are obtained
in the time dependent case is discussed in section TTI.

At this point we preview some of the results that will be presented in
sections IIT and IV where a parabolic problem with a spatial operator given by
(2.1) is considered. There it will be seen that all the usual ways of solving
implicit systems incorporating compact implicit schemes do not provide a
generally successful method in the following sense. There does not appear to be
a way of achieving a scalar tridiagonal factorization for an unconditionally
stable scheme when the compact implicit schemes are used for (2.1). However, by
using a different approach for the spatial operator these goals are still
attainable. Namely,we abandon our attempts to represent the separate derivative
terms in the spatial operator and adopt an approach which looks for a relation-
ship on three adjacent points between L(u) and the function u. The resulting
fourth order accurate relationship may be derived by a Taylor series development
and can be represented in the following equations

(2.10a) q;(L(U))j+l + qg’(L(u))j +q, L),
+ 0 =
. rjUj+1 + rjUj o r1 'y
h2
6
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or

21
(2.10b) g & ulx,) = L), + om*)

h2

where the operators O and R are each tridiagonal displacement operators, namely

+ 0 =
(2.11a) QRIS T g, WA g U
379 e T % N T s M
I 0 -
(2.11t RU, = U, .+ U, +r, U,
) B gt Saniey T By e
and where
4 = 6a, @ ok Bes TR TR A e TN
s = - - a @ o . = & s
4 3l et gl S il S et

=]
N

qj = 4[15aj+1 aj—l - éh(aj+1 bj—l - bj+1 aj—l) - h bj+1 bj_ll
- 2
qj = 6aj aj+l = h(Saj+1 bj - Zaj bj+1) - h bj bj+1
(2:14} + 1.+ n
= = + q. e =
T 2[qj(2aj+1 + 3h bj+1) qj(Zaj + hbj) + qj(Zaj_l hbj_l)]
r, = 1{ +(Za + hb.,,) + O(2a - hb.) + q.(2a - 3hb, .)]
1R Lo G T oS e j-1
0 i -
P m =
i j J)

These relationships were first presented by Swartz [24]. Equation (2.10a)
retains the scalar tridiagonal feature of a second order method while not
requiring additional fictitious points at the boundary. Note, in the case

where either a(x) or b(x) is identically zero, with the other coefficient
identically a constant, the usual compact implicit schemes (either (2.6) or (2.7))
will result. Because of these characteristics we have adopted the terminology
of referring to (2.10) as the operator compact implicit (OCI) method. Note a
formula of structure similar to (2.10) - (2.12) is presented in Appendix A

for the case of an uneven grid. In that case the method is third order accurate.

At least symbolically, we refer to the inverse of Q. The determination of
when O can be inverted is in general a difficult problem. In the case of constant
coefficients (a(x) = a = const, b(x) = b = const) the invertibility of Q on 22

can be fully analyzed by Fourier analysis [23]. Defining Rc = 22 as the cell
Reynolds number then 0_-1 exists for

(2.13) R, < /12 = 3.464

(The invertibility of Q on a finite dimensional space is harder to specify.

For the above case, a simple sufficient condition guaranteeing diagonal
dominance leads to R, < (-3 + /Z&9)/4 = 3.195.)

y
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l'he above spatial approximation can be extracted from those schemes developed
by {17], [10] in the context of approximating a time dependent parabolic operator.
Their resultant system of equations is identical to an OCI approximation applied
to a parabolic operator for some particular choice of a temporal scheme. However,

the present approach allows one to develop a variety of combinations. Moreover,

it should be observed that similar spatial approximations have been developed

under various names, in particular Collatz had sometime ago advocated such approaches
which he refers to as ''mehrstellen' methods [ 5].

In order to apply any of the nethods presented here to parabolic equations,

it is necessary to associate a time integration method. These considerations are
taken up in the following sections.
IT1. ALTERNATIVE TIME INTEGRATIONS WITH COMPACT IMPLICIT SPATIAL DIFFERENCES

In this section we consider time integration methods to be used in conjunction
with compact implicit spatial differencing [(2.6)-(2.9)] in the model parabolic
problem

(3.1a) u, aifx, t . b(x,t) u

(3. 1b) w0, £) = e(e): u(l,t) = dt); ube,0) = £(x)

For a discussion of compact implicit methods applied to the comparable
second order hyperbolic problem see [ 3], [4].

In all that follows the notation introduced in section IT is used. 1In
particular,

- 2 21 _1 P 2
n p. X . oA
3 — — U
(3.2) Si o 12 P lj
L - h
PR
2 G, X i
{3-3) Fj e 5 Uy
where U? %~ u(jh, nAt) and At is the time step.

Where the methods presented here have appeared in a similar form in other works
details are omitted and appropriate references are given.

Explicit Methods

The first class of time discretization methods to be considered are explicit
methods. Discretizing (3.1) in the usual fashion yields
Un+1 .

(3.4) e S b? F

n
At < G +
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The right hand side is evaluated by using the value of l'? and (3:2), (3.3).
PP .n 4! o ur AT 4
Boundary conditions for S, and F, must be specified. This technique was
) ]

investigated by Hirsh [ 6], Rubin [22], [23], and Adam [1].

This method is first order accurate in time and since it is explicit in time
a restrictive stability condition must be imposed (see e.g. Hirsh [23]). However,

equations formed by using (3.2) and (3.3) already are of an implicit nature.

Thus, essentially no extra computational work results if a second order implicit
temporal method is used in order to insure unconditional stability.

Implicit Methods

[wo second order unconditionally stable methods are considered. The first
of these is the usual Crank-Nicolson method

+
gl g okl okl om m nhd pnbL gl pn
£33 p e B ] ; A j .79

At 2 2 3

I'he second scheme to be considered is adapted from a :2cond order method presented
by Lees [12] which used standard approximations for spatial derivatives. The
Lees approach, when implemented with compact implicit spatial difference approxima-

.

tions, results in

DR Lt LB T L B R T
(3.6) g Al cd e gl J ) ) i) J
5 2At 3 2}

l'he Crank-Nicolson method would seem to be more advantageous since it is
only a two-level scheme. However, observe that the coefficients in (3.6) are
evaluated at the nth time level, thus iteration would be unnecessary even if a or
b were nonlinear. Nonlinear equations are discussed in greater detail in section VI.

Due to the implicit nature of (3.2) and (3.3) one must consider various
techniques for solving (3.5) and (3.6). Here we limit our discussion to three
basic approaches; predictor-corrector, block inversion and direct factorization.
The implementation of the three methods is similar for each of (3.5) and (3.6),
therefore details are presented only for (3.5).

1) Predictor-Corrector Method. The following predictor-corrector approximation
can be used to solve (3.5).

i o
: 3 " b J 4" F
(3.7a) it 5 3
i U? a?+1 s?+1 4 a? s? b?+1 ??+1 + b? F? 4
j = . i : ; : %
(3.7b) A . + , :
9
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Substituting (3.2) into (3.7) results in the equations

2 -1
< 8
8; = X7 n+1] [ I x.,] N 2 T ket o _A_ n _x_]
(3.8a) [x /2 a, I 12 . l.l; T+ > aj T + 12

2 -1
8 5
8k i 5 nt+1 4 X p 2]. ntl _ A n X 2|l. n
(3.8b) [1 z/ aj [1 1 o Uj I+zaj 1+12 ax Uj

At n+l -+l n _n
+ — (b 15 =oh R
2 3 j j J)
2 +
where *» = At/h” and f?+1 in (3.8b) is formed by substituting (i 4 into (3.3).

]
)

The method may be shown to be unconditionally stable and only requires the
solution of tridiagonal matrices, however, there is one serious drawback. 1In
order to obtain a second order in time accurate method it is necessary to iterate
(3.8b) several times. Due to this limitation the method is not competitive in
terms of computing time. Predictor-corrector methods of this type are examined
by Rubin [23].

2)  Block Methods. The block tridiagonal methods fall into two categories;

3%x3 block and 2x2 block inversion. Equations (3.5) combined with (3.2) and (3.3)
form the system. By grouping the variables in vector format where the unknown
vector is

(3.9) F

one obtains the 3x3 block tridiagonal equation

; 2L 8
X s I o | n+1
; — =01 - =
(3.10a) [1' + 6 ] T Fj 0
s Pl 2
X % Ol ntl _
(3.10b) [T o 1—2*—'] -—2— Uj - Sj =0
h
+1 At . ntl _hfl At n+l _nt+l n At .M o SE f U
.10c vt - = i - = ST 2"+ 22 b F, + 55 a) s
£ A | 20 5 7% 5 TN T 2N

Methods of this type were investigated by Hirsh [ 6 ]. This method is also
equivalent to one of the variants of the Spline 4 methods of Rubin [22].

10

— ' ]
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Alternatively, substituting (3.2) into (3.5), and completing the resulting
system with (3.3), and grouping the variables into the unknown vector

U,
j
Eeany’ Fi

results in the 2x2 block tridiagonal system investigated by Adam [ 1]

L 2 -1 £
3.12 e px o nElE end
(3.12a) [r e ] o U3 B 0
52l
+
(3.12b) I = % oS DI s 2hyntl _ gk yudl ekl
j 2 ) ] j

n At - nl-n
U, +—b5>b, F,.
h| 28

In using either of the block methods it is necessary to satisfy extra
boundary conditions, that is, a condition for F in the 2x2 block system and
conditions for F and S in the 3x3 block system. Let us illustrate how this is
accomplished at the end point X=0. For the 3x3 block method three equations

must be obtained in order to eliminate F. = u ‘ and S = u l . Combining
0 x x=0 0 xx ' x=0

equation (3.10a) and (3.10b) for j=2 with (3.10c) for j=1 and the independent
Padé formulas (see Hirsh [ 6])

(3.13a) U(‘;“ : r‘l’” +‘5‘ (Fg+1 + r?“) i ’1‘—2 (58+1 > s‘l‘“) * O(h’) = 0
2
(3.13b) ug+1 : u?*l + % (F8+1 + 2F?+1) - %—-s?*l + 0CEY = 0,

F0 and SO are eliminated.

Similarly, for the 2x2 block method two equations must be obtained in order
to eliminate Fy. Combining (3.12a) and (3.12b) for j=1 and j=2 with the Hamming
formula (see e.g. Ralston [18])

+1 n+1l nt+l 3 n+1l n+1 n+l
3.14 1 i * 5 . & + - F
( ) 0 9U1 U3 3 (FO 2Fl 2 )

FO may be eliminated.

The boundary condition for the (3x3) block method was presented by Hirsh [6 ].
The above boundary condition can be used to retain fourth order accuracy in
contrast to Adam's [1] second order boundary scheme.

In order to solve a block tridiagonal matrix the Thomas algorithm [ 8] is
used. This algorithm is analogous to that of a tridiagonal matrix, with multipli-
cation replaced by matrix multiplication and division replaced by multiplication
of an inverse matrix.

11
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3) Factorization Method. By directly substituting (3.2) and (3.3) into (3.5)
one obtains

rn+l - u® -1 =1

s | N 1 n+1 ‘ L 2 2 . 2 l7n+1 s N 1 2 ' 2 1
(3.15) At oh2 [11 TS O x 24 17 % o Uj

Upon examining (3.15) it is clear that there is no way to 'unravel" the implicit
operators. This fact has been observed by several authors (Ciment-Leventhal [ 3 ])
and indeed has caused some to abandon entirely the compact implicit methods [2 ].

Following the idea in [ 3], of completing the product, by adding the second
order perturbation term, where ‘i is the forward difference operator,

2 x 1 -1 ¢ 1 2 -1 §
: At o 2 X X LD
. o o S A SR N . 5 -
£3:56 Y [ "1 x] 2 [”’6 x] 7h U

to (3.15) the following factored equation results

-1 -1

5 o ana 1l 2 2 n <ntl 1 2 n+l
; - L = & S = B
3:.17) l:r 3 a‘j [r + 13 X] E ][{ i bj [I+ g fx] ax]..J

...] __1

n 1 2 2 U o.n 1 ?] n

T 5 ol JE o

1[T 17 x] x}[T abj[I B x RILE

5
At/h” and y = At/h.

a

N>

I
=)
&

]

where P

Denote the right hand side of (3.17) by G7,then the solution of (3.17) can be

obtained by introducing an intermediate variable Z?+l and splitting (3.17) into
) n+l 1 i sl om
3.18 - = ' + = & 8 s = G
( Al : 2 1]’ [I 12 = ] x | ] ]

-1
Tt 1 2 nt+l n+1
L =8 5 -2,
b [1 *% x] X]Uj i

This technique is analogous to D'Yakonov's method [13] for two dimensional
problems.

i

(3.18b) [I -

The algorithm (3.18) still requires the solution of more than one tridiagonal
system, but no extra iterations are necessary as in the predictor-corrector method.
However, a more fundamental difficulty persists in this formulation. An inter-
mediate boundary condition for Z?+1 is needed. This intermediate condition implies
that either u or u . on the bouﬁdary must be given. However specifying these in

general (for example by extrapolation) could create an ill-posed problem and

12
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generate instabilities (numerical experiments conducted by the authors have
revealed such instabilities). In certain problems however, e.g. boundary layer
equations, from physical considerations, extra conditions may apply,then (3.18)
mav actually be a reliable and efficient method.

TV. THE OPERATOR COMPACT IMPLICIT METHOD

In this section we employ the OCI approximation to the spatial operator
given in (2.1) with the two time discretization methods considered in section IIT
in order to provide a method for solving the time dependent parabolic problem (3.1).
The method is then extended to two dimensional problems.

The methods presented here are unconditionally stable. However, as with
most other methods for this problem there is a cell Reynolds number condition
(2.13). The discussion of stability will be reserved for section V.

IV.1 One-Dimensional Problems
Consider the equation

(4.1) u = a(x,t)u + b(x,t)u = L(u)
& XX X

where the coefficients in (4.1) depend on time. Let n indicate the time dependence
in the difference approximation to L(u) at the nth time level, i.e.,

y"
(4.2) wn? = M7t R | .
J h
The first time discretization method considered here is Crank-Nicolson.
et gt (ortlyTl pntl yntl o gny=l gnogn
4.3) j 2a J i
§ At 2 y

2h

which requires that one solve

(4.4) [I T e e R“ﬂ] U?+l - [I + X(On)-an]U‘; 5

where ) = At/2h2. (Note well, for simplicity in the presentation of the equations
we will be redefining A from time to time.)

n

j

(4.5) [Q“+1 - )\Rn+l]U?+1 - ™1 (:'1‘ :

Denote the righthand side of (4.4) by G,, then (4.4) can be expressed as

) &
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Note the following facts about (4.5).

1) The matrix represented by Qn+1 = >Rn+1

solved.

is tridiagonal, thus very easily
2) No fictitious points, or extra boundary conditions are needed.
3) The righthand side G? may be computed by the simple recurrence relation
(4.6) c? = 2U, - G,

4) The method is second order accurate in time, fourth order accurate in
space, and unconditionally stable (see section V).

The second method to be considered is derived from a Lees type scheme (see
section I1I). The Lees method combined with an operator compact implicit spatial
differencing suggests the following method,

ot gl (On)—l Rn(Un+1 + U 4 Un-l)
.7 ] I j j J
240t 3h2
which requires the solution of
(4.8) £ - 2@ Ré]U?+1 = a@Ht R o + [} P i R%]Ug—l,
where now * = zé%. Multiply (4.8) by Qn to obtain
3h
n = =
(4.9) 0 - )R{]V?+l = )R“[?? + U? 1] + ° y™l

Note the following facts about (4.9).
1) The matrix to be solved is tridiagonal.
2) No fictitious points or extra boundary conditions are needed.
3) The righthand side is easily computed.

4) The method is second order accurate in time, fourth order accurate in
space, and unconditionally stable (see section V).

5) It is necessary to generate U; by some other method to begin the
computation.

6) No iteration is necessary for a nonlinear problem.

This last point becomes very important in many applications, such as the
boundary-layer equations.

14
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IV.2 Two-Dimensional Problems
We now turn to the consideration of the two dimensional parabolic problem
(4.10) b, = Lx(") + Ly(u) = T(u)

where

n

(4.11a) L (u) au + bu
X XX X

(4.11b) Lo (o) cu + du
y y

vy

As pointed out in the discussion of factorization methods in section TII

our factorization technique can not be properly adapted with the usual compact
implicit method to spatial operators with different order terms. Thus, the
discussion here is restricted to the implementation of the OCI method.

For simplicity (4.10) is solved on a rectangular region given by

. . = 3 . = ..o = . = c-nK
’(Xj’yu>- * jhs 3=0,1,0043, v, khy, k=01, }

where boundary data is prescribed for all t for j=0,J and for k=0,K, and initial
data is prescribed for t=0. As in [ 3] it is possible to directly extend the

method developed here to rectangular-like L-shaped domains.

Denote the OCI approximations to the operators in (4.11) by

n
n Bt i L K
(4.12a) LU = @)™t r] 22
% X X 2
1.k h
X
and
w -1 n U? k
(4.12b) [11] o (G
YAk LY e

The methods to be presented are of the ADI (Alternating Direction Implicit)
variety and their derivations are similar to those developed in [ 3] for the
treatment of the wave equation.

Crank-Nicolson Time Discretization

As before the first method to be examined uses a Crank-Nicolson time
discretization

ntl n n+l,-1 _n+l1 ,.n+l fo=l N .0
J - U + (0 K. U
(4.13) lj,k Uj,k i (Qx ) Ry Jsk ('x) x _j,k

x

n+l,-1 _n+l1  .n+l n,-1 n . n

U + K U

+ (Qy ) b9 ik (QV) Yy i,k .

2h 2
¥

1S
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As in the one dimensional case where each of the derivatives was represented
separately, there is no way to 'unravel' the different inverse operators in

(4.13). However, by adding to (4.13) the by now familiar second order perturba-
tion cross term

5t ol -1 L | I = ]y
(4.14) AR e (’x) 3 (‘y) Ry i,k
4.14 7 —-—? 5 ._4-._.2 s
ot” h h
x v

where ¢ {s the forward difference operator,

the resultine equations are easilv seen to assume the factored form:

9% 2 B o | n+l,~1 _ntl} nt+l
a1 5) I -2 R T = ) (0 R U,
( [ x(Qx ) - ] [ )y( y ) y ] T
=1 —n n.-1 _n|,.n
= + X R I+ x (Q R U,
A 1’\t
where A = 5 and A = -
2h_“ T o
X ¥
+
Bv introducing the intermediate variable Z? i (4.15) splits into two tridiagonal
’
systems
2 G n+l, -1 Rn+] Zn+1 e
(4.16a) [[ 'X(Qx ) X 1,k e
n+l,-1 ,n+l} n+l nt+1
"’ - R < =7
T & v Oy ) ¥ ] jok o T,k
where
(4.17) . =lrer @Rl a @™t R, .
Ik X X X Yi &Y y| Jsk
Formula (4.16) is analogous to an ADI type approximation solved with a D'Yakanov
splitting. C? K is easily computed using previous values by the following
relationship
: n n n n.~1 .n .0 n-1
5 = J - 7 + A R U + G =
G Bt et N R i T Tk

+1
In order to solve (4.16a) boundary conditions for Z? k ©°nP the x = const.
Jo

boundaries are needed. Likewise, in order to solve (4.16b) boundary conditions
for Z?+i on the y = const. boundaries are needed. These intermediate boundary
condifions a{e obtained in the following manner:

16
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1) Use one sided differences to compute Z?+i at the four corner points.
n+l s

Here, the fact that Z is a fourth order approximation to

Jsk
n+1l At n+l
E - + s used.
UJ,k 2(cuyy duy)j,k is use

2) On the x = const. boundaries (4.16b) is employed to solve for 7? i

+1 . nt+l n+1 n+1{. .n+l
ORT= g AR U,
'y ik [Qy y ¥y ] Jak

+
3) Now that the x = const. boundary data for Zg i have been obtained, one

can proceed with the x sweeps of the ADI scheme using (4. 16a) Included
in these sweeps are the y = const. boundaries. Thus, the 7j k boundary

values necessary for the y sweeps in (4.16b) are now fully available.

Lees Time Discretization

Finally, a method which is a generalization of the one dimensional OCI-Lees
scheme is examined. Approximate (4.10) by

n
= + -
U1:1+1 0 1 (Q ) -1 Rx 3 (Q ) R (Un 1 + U + Un 1)
(4.19) dbk ik |ITX 5 3k 1,k
’ 20t h h 3
x y

Again, in order to obtain a factored tri-diagonal method one adds the second
order perturbation term

T ] [
_AtQ)lR o Sl AU
9 h 2 % 2| At
X b4
to obtain
’ T n '1 oy n+1
@2 [r-2,@) ] [ C R ] s

n

, n,-1 _n n,-1 _n
- [).X(Qx) Rx + Ay(oy) Ry]Uj,k

fivel L f n.-1 n] n-1
4+ A + A :
- [I X(Qx) RX][I y(oy) Ry UJ,k

17
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n

Denote the righthand side of (4.20) by G introduce an intermediate value

n+l 3,k
Zj K and apply a D'Yakanov splitting to obtain
’
n 3 R L0 ) n n
) - =
(4.21a) [Qx \x Rx]zj,k Qx Gj,k
n n, nt+l m atl
4. - X R | = 4
(4.21b) ny " V]I]’k Qy i,k

Note the following:

1) There does not appear to be any simple algorithm for computing the
n
righthand side. However, upon multiplying Gj K by Q: (as in (4.21a)) it
is clear that only a backsolve of the tridiagonal matrix Q; for different
righthand sides is required.
2) The intermediate boundary condition for Z?+i is obtained in the same
b
+
manner as in the Crank-Nicolson case once the Z? i at the four corner
’
points are computed.
3) As in the one-dimensional problem an extra plane of information must be

generated to begin the computation and no iteration is necessary for
nonlinear problems.

V.  STABILITY CONSIDERATIONS

In this section we discuss two stabilityv characteristics which enter into
the evaluation of the usefulness of difference schemes for parabolic equations.
At the threshold one must consider the Lax-Richtmyer stability of the evolutionary
operator [19]. More recently, it has come to be appreciated that the stability
characteristics associated with the spatial operator should be examined [20],
[71, [11]. The ability of a spatial difference scheme to resolve the spatial
variation in a region of sharp gradients (boundary laver) often gives rise to a
so called cell Reynolds number condition. Were we examine these stability questions
for the compact implicit schemes previously discussed.

V.1l. Temporal Stability Analysis

A

For the case of constant coefficients one can analyze the Ly stability
of the difference scheme of interest by Fourier analysis [19]. Here the discussion

5]
is 1imited to OCT schemes. Substituting U? = OEN e11 into (4.3) yields
_ [2420(9) c
(5.1a) Pen = (5:TE?33) where

i
|
18 ’

i

T : AN
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"
24 (cosP-1)+iR (12-R7)sinb
(5.1b) e(p) = 3a - - —< SR,
30—2R;+(6—R;)COSO+13PCSinﬂ

The term ?2(f) is associated with the Fourier transform of the spatial

2
operator alone [24). TFor stability is is required that fﬁv f < 1. Tmposing

N
this condition directly on (5.1) vields, Re?(f) £ 0 as a necessary and sufficient

condition for stability. This latter condition requires that

) 9
2&(005“—1)[30—2R§+(6—R;)cos“] + (12-Ri)3stin”ﬂ <0
Collecting terms and factoring out a (cosf-1) term yields

2

4
+ =
3R =0

°

(5.2) (cos“—l)[720-RQR;+3R2+COSG(144—60R

Regrouping, and noting from (2.13) that the region of interest is Ri S .y yields
: 2 2 2 4 <

(5.3) (cos“-l)f12(12—RC)+12(12—Rccose)+288+(16&-72RC+3RC)(cose+1)] SHOR

- 2
lo see that this inequality is always satisfied for Rc < 12, note

that the term in the left parentheses is £ 0 and the term in the bracket is the
sum of four terms, the first three of which are clearly non-negative. The last

term in the bracket takes on a negative minimum at Ri = 12 and even when cosf=1
this minimum is just the negative of the third term. This establishes that
2
‘frw‘ < 1 for R; €12, and the unconditional temporal stability of OCI-CN.
£38
n 1]

To see that OCI-Lees is similarly stable, substitute U? =00

into (4.7) to obtain a quadratic for oy

2 1
(5.4) (L + 3(K+1)oL + K=0

where K = as in (5.1) above (with X replaced by %—X). Since the OCI-CN

0]
CN 4
method 1s unconditionally stable, clearly in the range of Ri b A fK[ gt

The stability of the OCTI-Lees method is now contained in the statement of the
following lemma.

Lemma. For the roots PL of (5.4)

log| <1 iff Xl £ 1.

19
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Proof. First we prove the lemma for the case of equality in both inequalities.
G _ — 1¢/2 - +1y
Say K = e then solve for N directly as OT =p e where p = e 3
cos 5 = -2cos¥., Clearly such ¥ exists and thus ’u]} = /9] = 1. On the other
. 115 oy
side, if '.1' = 1, say Py = ei‘ “, then solving for K vyields
1A
K 1+2e{'/7
2 T
1+2e 14/2
Thus K| = 1. This completes the proof that !DL! = 1 iff |K| = 1. To show that
'rl' < 1 iff k! < 1 examine the variation of the roots o1, with respect to the

unit circle as K varies from 0 to +». At K=0,DI =0, ~ % , both roots are inside
the unit circle. Now by a connectivity argument, and the fact that the OI roots

depend continuously on the coefficient K [15], varying K such that !K! < 1 then the

corresponding roots 0y must remain strictlv inside the unit circle. TIndeed, if
some root "touched" the unit circle, i.e. !OII = 1, then by our proof above

1w 1 N ) g

K! = 1. This argument demonstrates that for ¥K! < I loI| < 1. Conversely at

K = 4+« both o roots are outside the unit circle thus, again by a connectivity

argument the Fz must remain outside the unit circle for all K such that !K{ b [

Finallv the stabilitv of the two dimensional lLees-OCI method is estahlished

)+
using the above Lemma. Substituting U? . o e”jn k¢) into (4.20) one obtains
,
2 i
{5-5) O ol - aB)p ~uf = 0
g = 1Ax2(0) o _ 1tAye(8)
where a = 19x28) * & = 1oye(e) and where 9 (8) and % (¢) are defined by (5.1b)

for x and y, respectively. Noting that a,f are each separately in the form of

a Doy as found above, one concludes from the above lemma, that in the range
!R:? < 412 !RZ! < /12 (i.e. where the cell Reynolds number invertibility
condition is satisfied for each spatial operator) |al <1, [g] < 1. Now

identifying K = - 4@ in (5.5) clearly our above Lemma implies !Ol o O 1

V.2 Spatial Stability

Experience with computations involving diffusion convection equations has
long shown that nonphysical oscillations will appear in the computed solution
when the spatial mesh size is not sufficiently small [201, [ 71, [11]. Here we
use the standard linear analysis to attempt to predict some of the cell Reynolds
number limitations associated with the methods discussed in this paper. Through-
out this subsection, for discussion purposes, we will consider the following
model "boundary layer' problem
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(S.6) au - bux =0, a,b positive constants

XX
u(0) =0, u() =1

where in general b/a is large. Note, the solution of (5.6) is

gx R,j
(5.7) u(xi) =y + c, e = + c, e > xj = jAx.

Operator Compact Implicit

The spatial stability analysis for this method is quite straightforward
and provides a practical guide for the range of usefulness of the scheme.

1

Assuming 0 RUi = 0 1is applied to (5.6) then one is to consider the three point

homogeneous difference equation
(5.8) RUi =0

Substituting a solution of the form Ui = uJ into (5.8) (using (2.11b)) leads to
the following general difference Solufion

2
2A+RC(12-RC)

(5.9) By = & # cqu: no=

N

24-R (12-R”
c c

Three cases are possible for general RC:

B RC < VI7, u > 1. The difference solution is monotone increasing,

concave up and properly approximates the true solution

N

V12 < RC < 4.,207607 (RC value where numerator of u vanishes),
0 <y <1, The difference solution is monotone increasing but concave

down and completely wrong.

3. RC > 4.207607, = 1 < u < 0. The difference solution is oscillatory.

Tn summary, the spatial modal analysis, of essentially the operator R
indicates that the cell Reynolds number RC should be restricted to the exact
same condition used for the invertibility of 0, i.e. RC < V12, This represents

no additional limitation on how one would prudently employ the OCT method.

Compact Implicit-Block Methods

To check the spatial stability of any of the block tridiagonal compact

implicit methods it is sufficient to consider any one of them since each method
(either the 2x2, or the 3x3) has the same set of characteristic roots. Thus, the

fundamental modes of the system can be obtained by taking a solution to (2.8 a,c)
of (5.6) of the form

21
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U1 . fc
(5.10) =y J=mi N simie F,

F1 C2

A nontrivial solution results if the determinantal equation

(5.11) (u—l)[(&—RC)U3+(1?—l1Rc)u2~(12+11RC)u-(4+RC)]=0

holds. A study of (5.11) will at least provide an indication of what types of
nonphvsical results are possible. However, there are four roots (and
corresponding arbitrary constants) to contend with now. A proper analysis
involves consideration of the particular schemes used to approximate the
required derivatives at the boundaries. Here we present a qualitative analysis
of the possible numerical solutions of (5.6) along with some illustrative
computational experiments.

For our model example (5.6) one would like to obtain a Uj which is

monotone, or at least, does not have large oscillatory modes which are
dominant. Generally, this is accomplished by restricting RC so that 1if

Re 1 < 0 then !u! < 1. However, a simple inspection of the bracketed cubic in
(5.11) at u = -1,0,1 reveals that such a condition can not be found, since there
are always three real roots of (5.11), Mys W, Mo such that

Mg *ly B m Iy = ] Mg < 0.
Thus the block tridiagonal schemes for (5.6) do not satisfy what has been
generally considered as a reasonable stability requirement. Yet the schemes
are useful in practice, see section VI. The reason why the oscillatory modes
do not even appear in some calculations, let alone dominate them, is tied to a
consideration of the way the coefficients are determined by the boundary
conditions.

A series of numerical experiments was made for (5.6) and qualitatively we
can conclude the following. TIn the range of RC values (0 < RC < 4/Y15 = 1.0328)

< <

4
S !u_f no dominant oscillations occur. While in the range /fg = RC -

-
R
2.14383 corresponding to the u, range lu_f S uy S e © the negative oscillations

where u

tend to affect more of the region, For My > eRc the oscillations are apparent
in most of the region. Typical results are presented for Rc = 1.0, LT.55 2.U5
2.4 in Tables 5.1, 5.2.

The case RC = 2.4 is particularly interesting because here u_ = - 2 and the
uy_ term is the dominant term in the solution in the interior part of region as
is apparent by observing that the ratio of successive terms is - 2.

Since the circumstances where these spatial oscillations will dominate

(they are always present in general) is not easily anticipated, one should be
aware of this potential problem for the block compact implicit methods.

22
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Table 5.1

Compact Implicit (2x2) Block Tridiagonal Solution of (5.6)

= 1.0, b/a = 30.

R
C

= 1.5, b/a = 45.

3 Uj u(xj) 5| Uj u(xj)

1 0. O 1 0. 0.

? «s16513F-172 e 1A0TYF =12 2 «26B99F~13 «99664F=19
3 «61378E-12 «RQTREF=12 3 -.50788E-13 «54633F-18
4 «18330F=11 «17860F=-11 4 e 14292F=12 «25481F=17
5 «51414F=-11 «e5N155F=-11 5 -e33484F=~12 «11520F=-16
A «e14134F=10 e 13794F =10 6 «B4259E~12 «e51727F =16
7 «38533F-10 «37658F=10 7 -.20584E-11 «23192F~-15
R e 104R6FE=-09 «10253F=09 ! «50913FE~11 «10395F=-14
9 e 2R4RBOF=-0Y e 27885F=09 9 -.12520E-~10 «46589F =14
10 e T 7395F=N9Y « T5R16F=09 10 «30904E-10 «208B0OF=13
11 «21010F=n8 «2NKA11F=08 11 -« 75975E~10 «e93576F=13
172 «57087F=n8 «eS5A027F=08 12 «18793F~n9 «e41938F=12
13 e 15495FE =07 e 15230F=07 13 -+45992F~0N9 «18795F=11
14 «42104F=0T7 e41399F=07 14 «11474E-08 «B84235F =11
15 «11428F=06 «11254F =06 15 -.27645FE~n8 «37751F=-10
16 «31053F=06 « 30590F=06 16 «7T0219E=~08 «16919F=09
Yr +R4PTIFE =06 «B3153F=06 17 ~e16225E=-07 « I5826F=09
18 e 227903F =05 e 226035F=05 1R «45561FE-07 ¢ 33983F=08
19 «Hh?2155F =05 e61442°2F-05 19 -.87359E=-07 «15230F=07
20 +«16B92E~-04 e 16702F=04 20 e 32645F~06 «68256F=07
21 «458B39F=N4 «45400F=04 21 -+308805E~06 «30590F=06
rrd e 1245RF=0N3 «12341F=03 22 «29748E-~05 «13710F=05
23 «33806E=-03 «33546F=03 73 «25611E=~05 «e61442F=05
24 «918BR5F=N3 «91188F=03 24 «37845F =04 «27536F=04
Z5 «274931E=-02 e 24THBF=02 25 «10386E=-03 «12341F=03
26 «6TTHEYE=-02 «HT3TYF =02 26 «62403E~03 «55308F=03
217 «1838B6F=01 «18316F=01 27 «23905E=-02 «24TBBF=02
7?8 «499K2F =01 «4QTHIF=01 28 «11645E=-01 «11109F=01
29 »13560F+00 «+13534F+00 29 «495R7E=-01 «4978TF=01
30 «36864F +00 «36T8B8F+00 30 «22T2TE+DO «22313F+00
31 «1000CE+0N] «10000F+01 31 «10000E+01 «10000F+01
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Compact Implficit (2x2) Block Tridiagonal Solution of (5.6)

R = 2.0, b/a = 60. = 2.4, b/a = 72,
c C
3 Uj u(xj) U.1 U(xj)

1 0. 0. 1 0. 0.
2 «40527F~11 «55946F =25 2 .10396E-09 «53927F=30
3 -.60778E-11 «46933F=-24 3 -.13186FE=-09 «64837F=-29
4 «16219E-10 .35239F=-23 4 «344T76E=09 «72010F=-28
5 -.32360E-10 e26094F =22 5 -+.60936E-09 e 79432F=-27
6 «73391E-10 «19287F-21 6 «12990E=-0AR «BT565F =26
7 -.15680F=-09 «14252F=20 7 -.25178F=-08 e 96525F =25
8 «34427E-09 «10531F-19 ) «51159FE-08 e10640F=23
9 -.74643E-09 «7T7811F=-19 9 -.10152€-07 e11729F=22
4 10 .16277F-08 .57495F=-18 10 w203R3F=-07 e 12929F=21
11 -.35401E-08 c4P4B4F=-1T7 11 -.40686F=07 e14252F=20
12 «TT0R9E=-08 «31391F-16 12 .B1453E-07 e15710F=19
13 -.16777E-07 «23195F-15 13 -.162R3FE=-06 «17317F-18
14 «36522F-07 «17139F-14 14 .32573FE=-06 «19089F=17
15 - 79496E=-07 e 12664F=13 15 -.65138E-06 e21042F=~16
16 «17304E=-06 «93576F=-13 16 «13028E-05 «23195F~15
17 -.37667F=06 e69144F =12 17 -.26056FE-05 e 26569F~14
18 «81991F-06 «51091F=-11 18 «52113E-05 «2B1H85F=~13
19 -.17847F =05 «37751F-10 19 -.10423€E-04 «31068F=~12
i 20 «38851F=-05 «27895F=09 20 «20B45E-04 e34247F~11
; 21 -.84541F=05 «20612F=-08 21 - 41690F=-04 «37751F=~10
; 2?2 «18423E-04 «15230F=-07 22 «83381E-04 «41614F~09
4 23 -¢39949E-0n4 «11254F =06 23 -.16676E-n3 e 458T2F=~08
; 24 «BBNB3F=-04 «B3153F=-06 24 «33357E-03 «50565F=07
| 2% =.18344F=03 e61442F =05 25 -.66651F=-03 «55739F=06
{ 26 «46035E-03 «45400F =04 26 «13401€E-02 «61442F~05
| 27 -455256F=03 e33546F =03 27 -e26014E-02 e6TT729E~04
28 «45128E=-02 «24TBBF=02 ?8 «60827E-02 «T4659F =03
29 «14551F=01 «18316F=-01 29 -+23290F=02 «82297F~02
e 30 «14782E+00 «13534F+00 30 .11462E+00 «90718F~01
: 31 «1D000E+D] «1D0NDF+0]) 3] «10000E+01 «10000F+01

sy




—————

B i o

e —

VI. NUMERICAL EXPERIMENTS

VI.I Introduction

In this section results of numerical experiments conducted with the
various schemes that were discussed in sections IT - IV are presented.
These calculations were performed in order to determine the viability of the
OCI method for solving viscous flow problems and to understand its character-
istics and limitations and to compare its performance with the classical
second order techniques now in general use as well as to other fourth order
approaches.

One of our major concerns is the efficiency of the various schemes, i.e.
computation time required to obtain a given accuracy. Obviously this is
machine as well as programmer dependent. In order not to bias any of the
techniques care was taken to program the algorithms in an efficient and
consistent manner. The computing times that are given include time for:
matrix setups, inversions, boundary condition evaluations and (for nonlinear
problems) iteration procedures. All results were computed on the NSWC/WOL
CDC 6500 computer.

The operation count estimates (multiplications and divisions) for the
block tridiagonal inversion algorithm is given in [8 ] as

(6.1) ops = (3n-—2)(m3 + m2)

where m 1is the order of the block and n is the number of equations. This
egtimate assumes full blocks. However, if the specific values of the elements
of the blocks are taken into account, e.g. zeroes and ones, the actual opera-
tion count can be greatly reduced. A conparison of operation counts for the
various inversion procedures (assuming full blocks) and the modified algorithms
are presented in Table 6.1. Also included there are the counts for matrix
setup operations. Note that for the block methods the inversion of the matrix
is the dominant factor in the running time, while for the OCI technique the
matrix setup accounts for most of the tinme.

VI.2 Linear Parabolic Equation

The first numerical experiment involved the solution of a one dimensional
linear parabolic partial differential equation with variable coefficients

(6.2a) g = a(x,t)uxx + b(x,t)ux 3 EZ0s (000 [
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1 (x+1) x+1)
where a(x,t) = fxtl) - b(x,t) = 1 QK:L
. (t+2)
(t+2)
with the exact solution
(6.2b) u(x,t) = u (x,t) = expl (x+1) (t+2)]
e
Initial and boundary conditions are given by
u(x,0) = u (x,0)
e
(6.2c)
w0, ) = a (0,t) 3 ull,t) = a (1.t)
e e

This example was constructed in order to test the stability and convergence
properties of the methods under consideration for a variable coefficient problem.
Results are shown in Table 6.2 and Figure 1. All the methods tested were
stable and show the predicted convergence rates. Crank Nicolson temporal
integration was used for all the schemes.

Of basic interest is the savings that can be obtained in storage and
computational time. As noted in Table 6.2 and Figure 1 the OCI technique is
the most efficient scheme of the methods tested. This is not wholly unexpected
since the block methods require additional work to compute the first and/or
second derivatives.

It is also important to note the differences in the computed L, errors

of the fourth order methods. These result from several factors among which are
the local truncation error and boundary conditions. The spatial truncation
errors, which are dominant for the case considered, are given below.

Compact Implicit - (Block Methods)

First derivative

4
e U N
E. ~ g5~ Y (h™)
Second derivative
4
- h Vi 6
= + 0(h)
E, * 750 ¢ (

Thus for equation (2.1)with a and b constant the local spatial truncation error
at point j would be

4 a vi 1
(6.3) E=-h' (359 * 150 Yy
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oC1

Specializing Fq. (A.16) for constant coefficients yields
y : 4 ¢ a vi b v
(6.4) E=~-nh (:’7\-6 u1 + 500 ”1')

In achieving a scalar tridiagonal system, the OCI technique leads to an

unsymmetric difference formula and thus has a larger local truncation error than
the block methods that were derived from symmetric formulations. Were it not
for the different boundary conditions, Pade relations (3.13) for the 3x3 blocks
and a Hamming type formula for the 2x2 blocks (3.14) both block methods

would give identical errors.

V1.2.1 General Boundary Conditions

The OCI method can also be applied to problems with more general boundary
conditions of the form

(6.5) A U 4+ Bu=g

A linear fourth order accurate expression is sought relating u, at the

boundary with u and L(u) at points j=0,1,2, i.e.

= BU. # H U, & H.U; + G £, +6.f, + G.f

(6.6) Fo 7l & Bollg + B0y oty & Gl + Gty + 68,

Employing the differential equation
L(u), = aS, + bF, = f, =0,1,2
j j 1 _] ( j ) ,

and the compact implicit formulas

- -
Fg * 4F; + ¥, = = (U, - Uy)
s, +10s, +s, =12 v - 2u, +U,)
0 1772 0 1 2
S + 45, + 8§, =3 (F, - F.)
70 1 2 h 2 >

the coefficients in (6.6) can be evaluated. These coefficients, the truncation
error, and the extension to time dependent problems are given in Appendix B.
As an example, Eq. (6.2a) was solved with the following boundary conditions

@x =20, u + w ue(O) + u (0) = (t+3) exp [t+2]

X

@x=1, u-= ue(l) = exp [2(t+2)]
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Table 6.3 shows the L, errors and L, rates for different mesh widths.
Comparisons with the results in table 6.2 indicate that for general boundary

conditions the L, error is larger and the computation time is increased.

V1.3 Burgers Equation

The results just presented although extremely promising are obtained for
a linear equation. In order to investigate the various methods for a nonlinear
problem that might be indicative of viscous flows the one dimensional Burgers

equation was chosen. Consider

. = - o
(6.7) u, (u a)ux + e

With the exact steady state solution given by

(6.8) ue(x) = q{] - tanh (%%‘}

Near x = 0, u(x) exhibits large gradients, and as v + 0 a steep shock wave forms.
The ability to resolve this flow field would demonstrate the viability of the
various methods.

Solutions were obtained in the domain - 5 £ x £ 5 with a = 1/2 and for
various values of v, and with the exact values of u(x) specified at the
boundaries. The initial conditions employed for all cases are

1 =5 < x< 0
u(x,0) = (.5 x = 0
0 < x <5

Results of computations with the OCI (Crank Nicolson and Lees) methods
and the second order Crank Nicolson finite difference scheme are presented in

Tables 6.4, 6.5, 6.6 and 6.7 and Figure 2.

Since Eq. (6.5) 1s nonlinear, iteration is necessary for the Crank-Nicolson
temporal discretization. We adapt the OCI method with successive approximation

for the nonlinear term, uu_, i.e.
n+l n+l * n+l
. U = U, (U
(6.9) Uj ( x)’ j( x)1

*
where Uj is the latest iterant value. This procedure converges linearly.

The second order finite difference scheme uses a different type of lineariza-
tion, 1.e.

28
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: . - a) Fn+1 I Fn+1 pn _ "
(6.10a) M, =) YT Bhell, o .o BN _: SN . WS
j X } & 2 A% 2Ax%

¥ 5 o
where l?
]

(6.10b) (U, + v,)/2 ,

*
Yﬁ being the lastest iterant. This form of iteration has super-linear
convergence properties [16].

. 15 * ;
Both methods assume an initial guess for U? 1 lj which is used to

solve the resultant tridiagonal system of equations. Iteration is employed
until the difference between successive iterants is less than some preset
tolerance. The steady state is assumed when differences in solution values
at two time steps is less than some predetermined value.

In contrast to the above procedure, the OCI-Lees discretization does not
require iteration and generally approached the steady state in about the
same number of time steps as the OCI-CN method.

Figure 2 presents a graph of the computed L2 error versus the number of

intervals, for the fourth order and second order schemes. The storage
savings possible with the OCI method are readily evident from the figure.
Tables 6.6 and 6.7 compare solution values obtained from the 4th order and
second order methods with the exact value, for two cases, v = .5 and y = .031.

Although the cell Reynolds number analysis for the OCI method

given in section V was derived for a linear spatial
can be useful to predict the behavior for nonlinear
For the Burgers equation it was found that physical
a steady state only when [R, <2.55, where

max
IR | R (u-a) Ax - DX
c v 2v
max

However, a careful inspection of the numerical resu
’RC! > 2.55,in computing the transient solution,
- max

operator, this theory
time dependent problems.
solutions were obtained for

1ts indicates that for
values are obtained

which yield cell Reynolds numbers exceeding V12, and physical steady state

solutions can not be obtained. These results sugge

st that when the

homogeneous case maintains, one monitor the evolution of the local cell

Reynolds number and consider modifying the spatial

29
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In contrast to the above behavior, for the boundary laver equations
oscillations when they occurred were confined to some local region, but
phvsical solutions were still obtainable elsewhere (see section VI.5).

The results of the computations presented above indicate that the OCT
method can be adapted to handle nonlinearities with very little additional
effort and can resolve regions with sharp gradients.

V.4 Two Dimensional Problems
The OCT method was tested for a two dimensional parabolic equation
f - ‘ =
(6.11a uy a(x,y,t)uxx + b(x,v,t)ux + c(x,y,t)uyy + d(x,y,t)uy
whose coefficients were constructed in order to obtain the solution
(6.11b) u(x,v,t) = exp{ (x+1) (y+1) (t+1)}.

Neither efficiency studies nor comparisons with other methods were made.

The aim here was mainly to check the order of accuracy and the viability of
the ADI formulation. Table 6.9 demonstrates that the splitting technique
given in section IV yields fourth order accuracy. Ciment and Leventhal [ 3]
have demonstrated that for hvperbolic equations this type of ADI scheme
retains fourth order accuracy on other than rectangular domains, e.g.

I. shaped domains. Similar results are expected for parabolic equations.

VI.5 Boundary Layer Equations

The main thrust of this work is to develop methods that could efficiently
solve viscous flow problems. Although the next two examples are rather
idealized, they do possess the intrinsic features of more complicated boundary
layer flows. The two-dimensional laminar incompressible boundary layer along
a flat plate with and without pressure gradient require that one solve

(6.12) GL‘X+CGV=uu + vu

! u +v =0
. X y

with boundary conditions

]
=

u(x,0) = vix,0)
and initial conditions

u(0,y) = F(y)

S ——

By making the following transformation

vwW2E]y

E= % . n=vy/v2vwx , v

o= nu~-v
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the governing equations reduce to

(6.13a) 26uu,. = ¢u + u + 2Eu. u
F n nn e e
-
(6.13b) ¢ = 2Eu_ + u
For the case of zero pressure gradient, S 1, the Blasius flow is obtained

and the equations become independent of f. The solution of the ordinary
differential equation that is recovered is compared with the time asymptotic
solution of equations (6.13a) and (6.13b).

Due to the nonlinear term 2fuu, and the decoupling of the momentum and

continuity equations iteration is required for the Crank Nicolson scheme.

The term 2fuu_ is discretized as follows
n+1 n nt+l
z 3 U ] 11§ - U n+ 2 2
S s | onde ] Y ] j e nt+l n
(250, b, )™ - 2 ( 5 e e (Uj =1 )
EFmploying quasi-linearization (Newton-Raphson iteration)
2 *y 2
h?+l}k: 3rf I.r'ﬂ-l o (F ) ,
i (R I
*
where U, is the latest iterant, the following relationship is obtained
- n+ 5 N
+ ! * + £ ny <
2ev,u, O™ - A 2t o™ - ()7 - (VD)%)
13 A B j )
K ~ n
Care must be taken in the choice of the initial U,. Although setting Uj = Uj
+1y 2
gives a second order approximation for (F? 1) , it reduces to first order for

(2{Gur)n+A due to the A% in the denominatbr of the derivative approximation

f )
or u,

*
I1f, however, U, is approximated by the extrapolation formula

J
* n n-1
LSRR A i O
b 3 j
+
second order accuracy is recovered for the term (2£U Uir)n “. This procedure

was employed in the Crank Nicolson calculations for both second and fourth
order methods.
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Since the accuracy of this linearization is of the same order as the
temporal discretization error further iteration should be unnecessary.
However, the decoupling of the continuity and momentum equations require
iteration to obtain the desired temporal accuracy.

If ¢u + 9 is identified as L(u) and
[(0_“)_1R“]17i A L Ve T
nn n

is either the fourth order OCI approximation or the second order centered
difference approximation (note that in this case Q = I) and i and m denote appro-
priate time levels, then the boundary layer equations may be discretized in two ways.

Method 1.

Un+1 n

n+

e (EE )

1 1 2 srs nts
(6.14) 26™ yTE (g )P L gt T B ]

where g(f) is the pressure gradient term. Employing Newton Raphson iteration
and performing the indicated operations, the following system of equations
is obtained

1, * 1 1 "
(6.15) [o“*“'(ziv],) i Rn+‘]t'rjl+1 . [n“’“ (r.u;,‘)

ko2
+ 0“*‘[&1? + AEg (E) j=l,e-,J-1

where ) = AE/AnZ and £ 1s evaluated at n+s. The svstem is tridiagonal and can
be inverted given U at j=0 and J.

2, -+
Since ¢4 appearing in On+{ and R™"° must be evaluated at m¥* the continuity
equation becomes

n+ n+’ n+s
5 £ ol = (¢

(6.16) 2’(Uf,)j J (tt“)j
or

n+l n n+1 n

(U =0y W + U,) ,
TR AT uic g NI Wpr- BESSRE PR L
n’j Af 2 j

which can be integrated using Simpsons rule,

n+! n+ 3

' n+:
(6.17) e = Bt o o W 20 0
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Method II. )
g + =] = 1
6.18) 22" 0T @)t L™ T R 4 [oh) el 4 e ™)

1 2An

ol

Performing the indicated operations, the following tridiagonal system of
equations is obtained.

a9 [Ty - g e T s e
] ] i) .

where

n A n,-1 n] n nts .n _n
G, = = R U, + & WS
¥ 2 [(Q ) 1 j 3

% o5
Ci can be evaluated at the new time level by the recursive relations

2 2 ! , 2
(6.20) G?+1 - (en*3/2 2Fn+?)(v?+l)- e G? _ aeg (™ - ;“+J(y?)

The handling of the u,_ term in the continuity equation for the above

method deserves special attention. Since 4 and u are evaluated at the (n+l)
time level, u, must also be evaluated there. Tt was thus necessary to use

a one sided second order accurate derivative approximation for s (uniform
mesh)

o+l _ ntl

T n
j (3‘1

(6.21) (u,) & AU]. & U?-l)/ZAf,

Both methods T and TI worked successfully. However, method I was
preferred computationally.

Lees Method

The Lees method, which does not require iteration, was also used to
obtain solutions of the boundary layer equations. The discretized equation is

+1 n-1
@l - -ul D) n-1 _n__
(6.22) 2¢™ Ut - T - I | 3 - . [U’.‘ L 4 ug‘”] + g™
J i 3An J
which reduces to
n,.n .n. = AR"| n+1 AR" n n—l]
6.23 s U, — = e (U + U
( ) [. ( J) 3 ]u1 3 [J 3
+ o"[r,“ Ul; U’;'l + AEg(Cn)]
where ) = AK/AHZ.
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In order to update QO and R at the (n+l) <« ¢ level, ¢ must first be
evaluated at that level. Hence it is necessary to employ (6.21) for the
integration of the continuity equation.

The Lees method incorporates three levels of information, therefore
a starting technique such as Crank Nicolson is needed. Furthermore, to
employ variable Af requires a restarting procedure so that for such cases
the Lees method may lose some of its appeal.

Table 9 compares the computed Lj error and wall shear, t,, for the various
methods. Note that using formula (6.6), especially for the cases with
few mesh points yields better predictions for the wall shear than the
standard fourth order one sided difference formula. Figure 3 which is a
plot of the Ly error versus the number of intervals illustrates the
savings in storage that can be obtained by the fourth order methods.

Effects of cell Reynolds number were noted for the OCI and 2x2 block
methods for the case An = 1. TIn the discussion below, reference will be
made only to OCI since the cell Reynolds number characteristics of the
block methods are not easily understood.

The local cell Reynolds number for the Blasius problem is defined as
Rc = ¢An

The function ¢ grows linearly for large n, so that at some point, as the
domain is extended, the local value of R. will exceed vIZ and when 4.207

is exceeded, as predicted by the linear analysis, oscillatory behavior will
ultimately result. This conclusion indicates ironically, that in the

region of small gradients (at the boundary layer edge) increased local
resolution might be required to remove the oscillatory behavior. Keller [9 ]
has made similar observations for second order methods.

In the above calculations for An = 1, with the boundary layer edge
at n = 6 no oscillations occurred (with the internal (RC)max = 3,790 at

n=5.0). However, with the boundary layer edge extended to n = 10.0,
oscillations appeared from the outer boundary inward to n = 8. Since
the velocity oscillates (< 1.5%) about a value greater than 1, in the
region 4 £ n < 10, the velocity profile exhibits overshoots.

Enlarging the domain does not cause the oscillations to invade the
region where the cell Reynolds number condition is satisfied as inspection
of the solution reveals. Furthermore, the computed wall shear is affected
only slightly (see below).

g Vi (Eq. 6.6)
6.0 4771
10.0 L4869
20.0 L4893
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The second boundary laver example considered was the flow with an
adverse pressure gradient, the Howarth problem, where the external velocity
is linearly retarded

As a consequence of the adverse pressure gradient, separation (vanishing
of the wall shear) will occur at some point downstream along the flat
plate. The determination of the entire flow development, from the initial
Blasius profile to the point of separation is sought. Since the boundary
laver equations break down at separation, it is expected that the numerical
computations will be sensitive near that point. Factors such as Af step
size and iteration criteria may strongly influence the calculations. A
complete analysis of the behavior of the numerical solution near the
separation point is not considered in this report. However, a set of
calculations for a fixed Af = 10-%4 and iteration convergence parameter,

¢ = 1075 have been obtained and are shown in Table 10. The computed
separation point (the point where the shear changed sign) along with the
running time for each calculation is given.

In general, one iteration was required for convergence of the
Crank Nicolson discretization, except near separation. Several calculations
did not converge near the separation point and were thus terminated there.
These are indicated by asterisks in Table 10.

Hirsh [ 6] emploving the 3x3 block method computed the separation
point atf = .119818 for An = .2. Since no discussion of the behavior of the
velocity profiles near separation was given in [ 6] a detailed comparison
can not be made. However, our calculations show that the second order
Crank Nicolson and the 2x2 block methods give {sep > L1200 foxr all An,

whereas OCI (in particular the Lees discretization) yields values of Esep < <1200,

Near separation the cell Reynolds number becomes very large and exceeds
the 1limits set by the linear theory. However, the actual behavior of the
solution in this region is not predicted well, and simple monitoring of
R. is not helpful as it was for the Blasius problem since it is now necessary
to take into account the nonhomogeneous terms contribution. Further investiga-
tion is necessary to understand even the nonhomogeneous linear case.
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Table 6.1

Matrix Setup and Inversion Operations* Uniform Mesh

[
MATRIX INVERSTON SETUP TOTAL

ESTIMATED** ACTUAL

Scalar
Tridiagonal 5N-4 SN-4 22N-22 27N-26
(0OCTI-CN)

2x2 Block
Tridiagonal 36N-24 27N-60 8N+16 35N-44
(C-N)

3x3 Block
Tridiagonal 108N~72 4LI9N-62 4N+24 53N-38
(C-N)

Scalar Sk
Pencadisgonal] 1020 10N 21N-16

Here it is assumed that multiplications and divisions
are equivalent. However on certain machines this may not be
true, e.g. on the CDC 6600 a division is comparable to six
multiplications. The operation counts would have to be changed
accordingly for the methods.

** peference [8].

*** Does not include extrapolation formulas for points adjacent
to the boundaries.
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Table 6.2

Linear Variable Coefficient Parabolic Equation

c
it

a(x,t)u + b(x,t)u
XX X

exp{ (x+1) (t+2)}

(4
]

Frorgrds TIME COMPUTING TIME*
METHOD N STEPS L2 ERROR L2 RATE (SEC)
-04
Second 100 2000 .20 % 10 35.5
Order _05 1.98
Crank 160 2000 .79 % 10 5554
Nicolson ~05 1.96
200 2000 s 5 D (0] 68.8
e 1.97
400 2000 13 % 10 1:35.5
3x3 5 2000 15w 10 12.2
Block ~06 4.06
Crank 10 2000 .90 % 10 L7
Nicolson -07 4.14
20 2000 .51 % 10 30.4
_08 4.67
40 2000 .20 % 10 58.5
22 5 2000 .83 % 1070 7.4
Block e 3.58
Crank 10 2000 .70 % 10 11.9
Nicolson -07 3587
20 2000 .48 % 10 20.8
-08 4.59
40 2000 .20 % 10 40.2
-04
Operator 5 2000 .24 % 10 5.4
Compact 05 4.00
Implicit 10 2000 .15 % 10 8.8
Crank ~07 4.00
Nicolson 20 2000 .94 % 10 15.6
-08 4.52
40 2000 .41 % 10 30.0

* Computation times are for a CDC 6500
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Table 6.3

Linear Variable Coefficient Parabolic Equation

+
uy a(x,t)uxx b(x,t)ux

M exp (xt+1) (t+2)

uh) + ux(O) = (t+1) exp [t+2] , u(1l) = ue(l)

OCI - 2000 TIME STEPS

N LZ ERROR L2 RATE COMPUTING TIME*

(SEC)

5 222 % 1002 6.57
e 4.796

10 122 % 10 9.58
. 4.049

20 737 % 10 16.71
= 4.063

40 461 % 1070 30.42

* Computation times for a CDC 6500

38




NSWC/WOL/TR 77-29

Table 6.4

Steady State Solution of Burgers Equation
Second Order Crank Nicolson

Y N DX WDT/DX? MAX ERROR L, FRROR RATE
=3 -2
50 .20 6.25 633 & 10 .125 % 10
-3 -3 .007
.500 | 100 .10 25.00 .158 % 10 .311 % 10
Er > .999
200 .05 |100.00 .395 % 10 .778 % 10
50 .20 3.125 .303 % 10°2 442 % 1072
. = .020
250 | 100 .10 12.50 JTAT % 1D .109 % 10
; ] .997
200 .05 50.00 .186 % 10 .273 % 10
50 .20 1.5625 128 % 10 130 % 107+
o i .061
1125 | 100 .10 6.25 .303 % 10 314 % 10
% i3 .019
200 .05 25.00 .749 % 10 .775 % 10
50 .20 775 694 % 10°Y 473 % 1071
| i - .331
| .062 | 100 .10 3.100 130 % 10 940 % 10
‘ Y " .069
200 .05 12.40 .308 % 10 224 % 10
100 .10 1.55 65 % 10 .33 % 1071
.031 28 * .328
200 .05 6.20 .130 % 10 665 % 10
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Table 6.5

Steady State Solution of Burgers Equation
OCI Crank Nicolson & Lees

i
Vv N DX vDT/DXz MAX ERROR L2 ERROR L2 RATE
10 1.00 25 132 -2 -2
. 1 82« 10 .231 % 10
g Er 4.076
20 .50 2.00 .796 % 10 .137 % 10
.500 i s 4.028
50 .20 6.25 .205 % 10 .348 % 10
o . 3.985
100 .10 | 25.00 128 % 10 .216 % 10
10 1.00 125 .189 % 1071 267 % 101
54 5 4.125
20 .50 .500 126 % 10 .153 % 10
.250 i 5 4.062
50 .20 3.125 312 % 10 .370 * 10
o > 4.008
100 .10 | 12.500 194 % 10 .230 % 10
20 .5 .250 .187 % 10} .188 % 101
A i 4.120
.125 50 .20 1.563 466 % 10 431 % 10
o _4 4.046
100 .10 6.250 .312 % 10 .261 % 10
50 .20 .388 868 % 10 .554 % 102
.062 &) _3 4,145
100 .10 3.100 484 % 10 313 % 10
! — - sl
f 60 .167 .558 .598 % 1071 .346 % 10
i | -2 -2 4.263
|.031 | 100 .10 1.550 .868 * 10 .392 * 10
|

e TR TP G P i TP D i

v

40




e

S ————

Steady State Solution of Burgers Equation

NSWC/WOL/TR 77~29

Table 6.6

Comparison of U Profiles

v = ,500
EXACT 0CT - C-N OND ORDER C-N
;. N = 10 N = 20 N = 100 N = 200
-5.00 .993307 .993307 .993307 .993307 .993307
~4.00 .982014 .982042 .982015 .982014 .982021
-3.00 .952574 .952845 .952589 .952574 .952595
-2.00 .880797 .881716 . 880850 .880797 .880833
~1.00 .731059 .732380 .731138 .731059 .731094
- .40 .598688 . 598688 .598705
i .549834 . 549834 .549842
~0.00 .500000 .500000 . 500000 .500000 .500000
41
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Table 6.7

Steady State Solution of PBurgers Fquation
Comparison of U Profiles

v = .031
‘”—1_"‘“-’——.‘(v-»-"'”..Tﬂi’-w-w-_ﬁ"mt-- e T e |
! EXACT i _ nmn- _(i e 2ND ORDER CN {
A U | N =60 _I N = 100 N =200 |
b — —_— WU
-1.200 1.000000 1.000000 1.000000
| =1.167 | 1.000000 .999997 |
' ~1.000 1.000000 .999990 | 1.000000 1.000000 §
- .83 | .999999 999961 |
- 800 | .999998 .999995 1.000000
- 667 | .999979 .999894
- .600 | .999937 .999903 1.000000
- .500 .999086 .999651
f - .400 .998425 .998091 .999981
| - .333 .995397 .998843
i- 200 961794 .962779 .994937
|~ .167 .936325 996115
0.000 .500000 .500000 .500000 .500000
.167 .063675 .003885
200 .038206 .037221 .005062
333 .004603 .001157
| . 400 .001575 .001909 .000019
| .500 .000314 .000349
.600 .000063 .000097 .000000
.667 .000021 .000106
.800 .000002 .000005 .000000
.833 .000001 .000032
1.000 .000000 .000010 .000000 .000000
1.167 .000000 .000003
1.200 . 000000 i .000000 .000000
42
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Table 6.8

Two Dimensional Parabolic Equation

OCI - Crank-Nicolson

+ b(x,y,t) u + c(x,y,t) u + d(x,y,t) u
X vy 5

u(x,y,t) = exp {(x+1) (y+1) (t+1)}

Domain is square 0 = [1/2 £ x,y £ 1] = Ay = h
| MAX MAX
| TIME RELATIVE RELATIVE
STEPS h At LZ*ERROR Lz—RATE ERROR RATE
5 wl Ci. 3.235-03 4.414 1.544-04 3.905
20 +05 «025 1.517-04 4.955 1.031-05 1.977
80 + 025 .00625 4.890-06 6.549-07
10 ol ol 3.903-02 4.364 3.909-04 3.933
| 40 .05 .025 1.896-03 4.909 2.559-05 3.982
160 02D .00625 6.311-05 1.619-06
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Table 6.10

Howarth Flow

METHOD N An gL RUNNING TIME
5 (SFC)
Second Order 20 <50 - 1252 8.90
Crank Nicelson so | .20 .1209 19.92
100 .10 .1204 38.41
200 .05 .1202 71.58
2x2 Block 20 .50 .1202% 19.38
Tridiagonal
Crank Nicolson 50 .20 -1202 47.47
100 .10 .1202 94.05
0CI 20 .50 .1188% 13.74
Crank Nicolson 50 20 11199% 35.81
100 .10 .1201%* 73.63
0CI 20 .50 .1186** 11.66
s 50 | .20 .1200 27.55
100 .10 .1200 54.21
AE = 1074 ,  ekkk e 107

+ Point where the shear changed sign
* Calculation didn't converge and was terminated
** Oscillations occurred and calculation was terminated

*** Tteration parameter
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APPENDTX A

The operator compact implicit formulas are derived here for uniform and
nonuniform grids, with their associated truncation errors.

Given

(A-1) Tu = au = hul.
XX X

a linear relationship between u and the spatial operator, Lu, at X] is

sought in the form

. 0 + - 0 +
(A-2) + + = ! 3
r U +r u,+tr u =g L(u)_+gq L(u), + q I,(u)+

where as shorthand notation the subscripts -, 0, + are used for j-1, j and j+1
respectively, and the j dependence of the coefficients is not indicated, see (2.12).

The function values u_ and u, and the spatial operators L(u)_ and L(u)+ can be

A
obtained through Taylor's series expansion about the point j.
2 h 3 h 4 h 5 h 6
I (1) By 2y o (3) + (4) 4 A5) = A6). ...
(A-38) uw =uy+h, Tor N v % Ys % T %
2 3 4 5 6
h h h h
= (1) = (2) w A3 L L - (e, (. SRR
=38} e RrGehsg EaEg SR e e T s U T

(A-3c) L(u)_ = a_ ufz) 8 1) . b_ uél) + (a h b )uéz) )
2
h h h '
& (3) = = (4)
- h_ (a_ - -2—' b_‘)uo + ?—:‘— (a_ e ‘3_ b_) 0
3
h h 4 h
s e (5) h = oy
" (a BT b (’- 5 b—)“o
(A-3d) L@, = a, ul) + b, u e - b, u(()l) *(a, +h, b+)u(§2)
2
h h h
+ (3) + (4)
+h+(a++-2—b+) 0 +2, (a++§—b+> 0

3 4
h h h h
+ o 1 ¢ B R N
+§_!—G++T.—b+)“n +Z:_(a++5 +)“0 T
where superscripts in parenthesis indicate derivatives and h+ = x1+1 - xj and
h_ = Xy T Xyqe Multiplying equations (A-3a) - (A-3d) by a, B8, vy, 8, respectively and
colleciing terms the following relation is obtained
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(A-4) au * Bu + yLlu) + HrL(u)+ = (a+ﬁ)un + B uél) + A uéz) +Cu
or

i = R
(A~5) au, - (a+9)u0 % Be =~vL(u) - ‘L(u)+ + A uéh) + B uél) + C

+ Truncation FError,
where in order that (A-5) be equal to (A-2),
B =ah_ - Bh_+6b, +Yb_ = b

2 2

= oh, Rh_
& = > + 5 +6<a++h+b+>+‘,f<a_-h_b_>=a0

(A-6) 3 3

Define

(A-7) @=aD, B =@D, y=4D, &

]
>
o

where D is the determinant of (A-6)

3 2
D = {12a_a+(h+ + h,

3 2
- 2a,b_h_(3h,~ + 7h,

(A-8) 3 2 2 3
+ 2a_bh (h,> + 5h," h_+ 7h h_° + 3h_)

)
- hh b (b, + )¢,

-~

then the variables &, ﬁ, ; and 8§ are given by
*os p ?
Y {12}1+ a, a, (h+ - h+ L )

2 - 2
(A-9) + 2a,bsh, “h_(3h, + 2h ) + 2acbh “(h," - hh_ - 2n_7)

3
+ h,"h_bob (h, + h_)}




= N———
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(A-10) o 1% A e R Gk 20 BB “OOh." * Hh 4
/ = ‘ Annd_|_ A 1+1_ - h+ ‘HO b L L = h_ )
28 BLE W (o, + 8k ) Eb B RR St 45D
TR RGN - gie e Ty TR
(A-11) fh_(h, + h) = D[an - h+h0J - x[én+ + h+h+} - y[?a_ - b_(2h_+ n+ﬂ
(A-12) /yh+(h+ +h) = D[?.an + h_hn] - i.[?n+ + b+(2h+ + h_)] - Y[?.a_ - h_b_]

Multiplying thru by -D, the q's and r's become

(A-13) qENER IR = NENES qRa= R )
r = -g8, ro = (a + R), r+ = —g

such that the operators 0 and R are given in the form

0=6S -DI+ysS_
(A-14)

R=-0aS + (a+8)T -8 S_
where S is the shift operator.

Using the relations (A-7) - (A-12) the truncation error given by

A 5 ~ 5 ~ ’3 A
oh fh Sh h Yh h
1 g 2 + L - = (5)
i Ly o s T R, +
(\ ]5) I.T D{ 5! 5: + 3: (a+ + 4 b+) 3! (1_ 4 -)}UO
~ 6 ~ 6 ~ 4 ~ 4

L rihi_+gh____+fit +.h;+.b +Yh__ _.h__b (6)
Dy 6 e T AT -7 oo

is seen to be third order accurate for small h.

For a uniform mesh, h+ = h_ = h, the truncation error reduces to
4
g ST T (6)
(A-16) F’T = 1800 aa { [9 aoa“a_'h:lu0 + [14 aoa_b+
- (5)
35 a_a+b0 + 4 a0a+b_]u0

which is fourth order accurate.

Noete that in equation (2.12), common factors in the q's and r's have been
canceled (involving constant h), so that (2-12) differs from (A-13) by a

multiplicative constant, 2h3.
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APPENDIX B

IThe coefficients of (6.6) namely

3 = - un + T T + G i =R
(B-1) }0 (ux)O LOIO ”1b1 * H212 Ofﬂ i (lfl Zfz

are derived.

Consider the compact implicit formulas

i ER .
(B-2a) Fn + AFl + F2 o (L2 LO)
(B-2b) S +10S. +5 =22 (U - 2u. +U)
0 : e 1 2
(B-2¢) S ols 8. %2R =T
i 0 ) Rl el 0

and the differential equation at points j=0,1,2 expressed as

(B-3) e or e =0l 52
. i i ] ]
Equations (B-2) - (B-3) form a system of 6 equations in 9 unknowns, and
i f .
thus FO can be determined as a function of uO’ul’UZ’fO’ 1 and f2
The coefficients in (B-1) are listed below.
b b b b
6 1 2 15 48 2 1L 3
Ho= - OB+ +5 (==-—=+ —Js/c
g ; Ry ey L
b b
H, = - 2% (_g LU Y 2}/C
1 a a h
h 2 1

2 h a; a, h h2 a, 1 h
3b
-2 b 6
(B-4) G, == (—+3)/c
0 ao a] h
b
-8 2 15
C=-—-[3-—-—+~——)/C
1 a1 a2 h
3b
-2 1 6
¢, =2 (L4 8
2 a, a1 h
PRY o ' S e
81 a2 ao h a1 a2 ao
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The truncation error is given by

b. b b b b
3 2 3 3 2 3
B ={- 4 —-10 — JE. + |4 —|— - — + = ~
INC
TRUN { ( a, az> S [ a,3 (a3 a2 h)

where

E. =5 hﬁ u(6) E_. = 3 :
S 30 2 i :

Eq. (B-5) can be specialized for constant coefficients

5
ol B, 3) ) b 5% (5)
(B-6) Errune = % [Gza+h)u +(a+h)u ]
(;) 180

In the case of time dependent problems modifications to (B-1) are necessary.

Consider the one dimensional parabolic equation

(B-7) u, = L(u) = aS + bF = f

The first derivative at an end point at time level (n+l) in the form of

L ol antl n+l . n+l ntl . n+l
(B-8) FO = HO UO + Hl U1 -+ HZ U2 A
n+l _n+l n+l . ntl ntl ntl
GO fo. 5 01 fl + G2 f?

is sought.

Again, as before use the compact implicit formulas (B-2), but with u,F and
S evaluated at time level (n+l). The differential equation (B-7), however,
discretized temporally by a Crank Nicolson scheme to yield

gl L @
(B-9) R SE - e ar.l+1 Sn"'l % bn+1 Fx}+1]/2 "
At i 3 ] i)
fn-!-l 3 fn
n .n o n s} i
[aj Sj+bj Fj]/z .. 5
B-2

-
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Thus f appearing in (B-8) is the spatial operator evaluated at (n+l1) and is
given bv

(B~10) £, - za S @b omE=1 + U

n+1 ntl _n+l n+1 2 Ut (fn 2 n)
i i j j At JRAE

Hence, substituting (B-10) into (B-8), the desired relationship is obtained

n+l ntl | 2 o+l n+l ntl . 2 ntl] o+l
= | £ ok g '
Fo [}‘0 * ¢ Co ]Lo [Hl TR 1 ] Yy
_ el o, 2 n+1] o+l n+lfn, 2
(B-11) ot [}12 il Gy 12 + co [fn s U,

oigral i et nElfen 2000
gy [fl * 2c ”1] >l [fz * At Uz]

The local spatial truncation error remains unchanged.




